• 684632739 (Gijón) | 637613488 (Oviedo) | 637613488 (Avilés)

  • info@neurofuncion.com

sistema nervioso

Tractos descendentes afectados por un ictus

Tractos descendentes afectados por un ictus 320 240 FisioAso

A grandes rasgos, cuatro son las vías descendentes o motoras (corticoespinal, retículoespinal, rubroespinal y vestíbuloespinal) sobre las cuales, nuestro Sistema Nervioso Central manda sus señales al resto de la periferia, para ejecutar a su «antojo», las órdenes activas sobre las cuales nos dirigimos para cambiar nuestro mundo, tanto para ser un medio como un fin, el movimiento.

Y es que las funciones organizativas de cada una de ellas pueden ser interesantes a la hora de rehabilitar una disfunción en el movimiento, ocasionado por una lesión de una de las vías que implican una clínica específica ya investigada. Muchas veces, por la situación concreta en la que se ha desarrollado un ictus o un Daño Cerebral Adquirido (DCA), siendo ésta una zona de paso de muchas vías descendentes (como por ejemplo, la muy sufrida cápsula interna, zona de paso de varias vías descendentes), cabe destacar que existe una variabilidad clínica muy relevante, ya que la afectación al ser una «zona de paso», atribuye daño de manera aleatoria y muy poco presentada en patrones.

Este interesante artículo (1), donde desarrollan el estudio específico de la organización motora de la mano de los macacos, a través de la provocación de una lesión neurológica de un tracto descendente, concretamente mediante lesiones quirúrgicas bilaterales del tracto corticoespinal (el más grande y más importante de las vías motoras), examinaron cuál era la función principal de éste. Tras dicha lesión, inmediatamente después de la lesión, los animales mostraron una parálisis flácida, pero lo interesante viene después. En los días siguientes recuperaron considerablemente la función motora, de tal manera que podían trepar y correr alrededor de sus jaulas casi con total normalidad. Por contraste con esta función locomotora recuperada, los movimientos de motricidad fina de la mano, permanecieron muy deteriorados, y nunca lograron recuperarlos, siendo éstos el sello distintivo de la destreza manual de los primates.
Para investigar más a fondo cuál de las estructuras permiten la recuperación de la función de la mano en ausencia del tracto corticoespinal, Lawrence & Kuypers (1968b) sometieron a los animales recuperados a lesiones quirúrgicas más selectivas de las vías motoras restantes. Cortaron las vías laterales del tronco cerebral (que comprenden principalmente el tracto rubrospinal) y éstas dieron como resultado una pérdida de agarre con la mano, que nunca se recuperó; los movimientos locomotores brutos (los contrarios a la motricidad fina) estaban relativamente poco afectados. Por el contrario, el corte de el sistema descendente medial del tronco cerebral (principalmente reticuloespinal y vestibuloespinal) produjeron un deterioro severo de los movimientos brutos, pero los animales se mantuvieron capaces de agarrar la comida si se les colocaba cerca de la mano.

Sacando una primera conclusión, la motricidad fina de la mano tiene como componentes más importantes el tracto corticoespinal (Limón, 1993; Schieber, 2004 cf. Schieber, 2011)(movimientos de los dedos independientes y selectivos) así como el rubroespinal (Sasaki et al. 2004)(inervando musculatura más distal).

Por otro lado, el papel del tracto reticuloespinal se ha estudiado intensamente en la marcha, la actuación de los ajustes posturales y en los alcances, verificando su implicación en éstos pero no de manera exclusiva, ya que están coordinados con las salidas de los tractos corticoespinales y rubrosespinales.

Debido a que los conceptos actuales enfatizan el papel de la estimulación reticuloespinal a la hora de realizar los alcances y los movimientos gruesos del aparato locomotor, los estudios que tratan de asignar las salidas de la formación reticular en primates generalmente han ignorado los músculos que actúan sobre los dígitos (Davidson & Buford, 2004, 2006; Davidson et al., 2007). Como comentábamos anteriormente, a los macacos que se les lesionaba el tracto reticuloespinal, podían subir alrededor de sus jaulas, incluyendo el agarre de los barrotes de la jaula de tal manera, que podían soportar su peso corporal total. Otros estudios confirman que la formación reticular, al ser estimulada, podría provocar la actividad en los músculos que actúan alrededor de la muñeca. Además, el reflejo de sobresalto acústico – que es más probable que sea mediada a través del tracto reticuloespinal – puede producir la activación de los músculos intrínsecos de la mano cuando se facilita de forma anormal en los pacientes con hipereflexia (Brown et al 1991c.). Por último, Ziemann et al. (1999) informaron que la estimulación magnética transcraneal sobre la corteza motora primaria en sujetos humanos podría provocar respuestas en músculos de la mano ipsilateral. Las características de estas respuestas sugirieron que estaban mediadas a través de una vía del tronco cerebral (probablemente la reticuloespinal), activada a su vez por las proyecciones corticoreticulares.

Por tanto, en el momento que observemos una presentación clínica de una ausencia de control motor de la mano, y en referencia a la bibliografía expuesta, sería interesante intervenir en la estimulación de los tractos descendentes, donde por ejemplo, ante una muñeca que el paciente no puede estabilizar, el trabajo a través de ejercicios de enderezamiento, alcances o marcha, son interesantes para la búsqueda de esa vía reticuloespinal estimulada de por si, para elaborar un trabajo específico de ese tracto y su implicación en la muñeca. Lo mismo podemos observar en otro tipo de paciente, con presentación clínica de pérdida de movilidad selectiva en los dedos, donde un trabajo del tracto corticoespinal así como el rubroespinal, son más que interesantes para poder llegar a estimular esos dedos, como por ejemplo, trabajar el orbicular de los ojos junto con el de los labios (en una actividad que implique también el agarre de dedos, como pintarse los labios), para al menos estimular éstas vías descendentes.

 

Bibliografía:

(1) Kuypers HG , Fleming WR & Farinholt JW ( 1960 ). Descending projections to spinal motor and sensory cell groups in the monkey: cortex versus subcortex . Science 132 , 3840 .

(2) Lawrence DG & Kuypers HGJM ( 1968a ) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions . Brain 91 , 114 .

(3) Baker SN. The primate reticulospinal tract, hand function and functional recovery. J Physiol 2011 Dec 1;589(Pt 23):5603-5612.

(4) Lemon RN , Mantel GW & Muir RB ( 1986 ). Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey . J Physiol 381 , 497527 .

(5) Lemon RN ( 2008 ). Descending pathways in motor control . Annu Rev Neurosci 31 , 195218 .

(6) Sasaki S , Isa T , Pettersson LG , Alstermark B , Naito K , Yoshimura K , Seki K & Ohki Y ( 2004 ). Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation . J Neurophysiol 92 , 31423147 .

(7) Brown P , Day BL , Rothwell JC , Thompson PD & Marsden CD ( 1991a ) The effect of posture on the normal and pathological auditory startle reflex. J Neurol Neurosurg Psychiatry 54 , 892897 .

(8) Ziemann U , Ishii K , Borgheresi A , Yaseen Z , Battaglia F , Hallett M , Cincotta M & Wassermann EM ( 1999 ). Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles . J Physiol 518 , 895906 .

Actividad muscular selectiva

Actividad muscular selectiva FisioAso

Las alteraciones neuromusculares tras un daño periférico en una articulación, influyen en el Sistema Nervioso Central (1), ya sea en su representación cerebral (organización estructural de las neuronas, representando la zona dañada) así como en el comportamiento posterior de evitación del mismo daño, es decir, la precaución e incluso a veces miedo, a volver a lesionarse la misma zona en cualquier gesto o movimiento de la actividad de la vida diaria. El caso es que cuando existe un daño del Sistema Nervioso Central, la periferia se comporta de un modo similar, es decir, la desestructuración neuronal en representación de la zona dañada, la periferia reacciona en modo de protección (2) mediante el espasmo y el dolor, para no incidir un mayor daño tanto a las estructuras centrales como en las mismas periféricas.

Todo el sistema nervioso, en definitiva, está conectado (por eso es un sistema), y no existe diferenciación (en cuanto a características químicas, eléctricas y mecánicas) alguna en lo que se refiere a periferia, central y autónomo. Una influencia negativa en la mecánica o neurofisiología (patomecánica o patoneurofisiología) en una parte de ese sistema, repercute directa o indirectamente en el mismo, fomentando estrategias de protección tras ese daño recibido. ¿Y qué tipo de estrategias defensivas puede utilizar el sistema nervioso? Pues muchas de ellas son conocidas, como la nocicepción, el espasmo, o las posturas antiálgicas. Es por ello que desde el concepto INN utilizan la nomenclatura posturas evasivas de tensión neural, donde muchos de nuestros pacientes adquieren un tipo de alineación corporal que precisamente evita la generación de mayor daño o exposición al peligro. Ahora bien, cuando el sistema ya está estabilizado, ese tipo de posturas dejan de tener sentido, pero el cambio biológico está hecho, lo que implica que esas modificaciones se perpetúan en el tiempo. Por poner otro ejemplo, lo mismo pasa en los mecanismos del dolor. El dolor es un aspecto positivo y un mecanismo de defensa ante un daño potencial o inminente, ahora bien, cuando éste tipo de daño ya ha desaparecido, y sin embargo los mecanismos se perpetúan, aparece o se etiqueta de dolor crónico, que en un sentido biológico, deja de tener sentido (valga la redundancia).

Es por eso, que en el paciente neurológico tiene especial importancia el devolver la naturaleza mecánica, química y eléctrica de todo el sistema nervioso, eliminando las posibles restricciones específicas que puedan generar cambios patofisiológicos y patomecánicos, de tal modo que la movilización de éste se vuelve un imperativo. Pero dicha movilidad, ya de paso, queremos que se vuelva activa, puesto que uno de los requisitos fundamentales en nuestras actividades de la vida diaria (todas ellas) implican una actividad muscular selectiva, lo que precisamente les falta a éste tipo de paciente.

La actividad muscular selectiva es importante por varias razones:

– La primera, por devolver la movilidad voluntaria perdida, que genere una funcionalidad y le dé al paciente una mayor autonomía a la hora de vivir su vida, ésta la tenemos todos en mente.

– La segunda, para que el músculo pueda proteger al sistema nervioso, puesto que si no realiza ésta función, el sistema nervioso se ve expuesto a problemática severa externa, como traumatismos, tirones, aplastamiento y un largo etcétera. Pensemos por un momento en un músculo atrofiado, por ejemplo, el glúteo, tan característico en pacientes neurológicos que no se pueden poner de pie, y por ese desuso, el músculo ha quedado precisamente atrofiado y sin cumplir esa función de protección. Ahora, si el paciente no puede ponerse de pie, obviamente pasará horas sentado. Y si pasa horas sentado, y con un glúteo atrofiado, ¿cuán expuesto está el nervio ciático de ambos lados? Ahí queda esa reflexión que nos plantea Carlos Rodríguez en sus cursos de introducción a INN.

– La tercera, para que el músculo, al generar la movilidad activa, bombee a nivel neurofisiológico todas las sustancias generadas por inmovilización, nocicepción e inflamación vertidas al espacio extracelular a causa del daño generado por la lesión del sistema nervioso, como H+, sustancia P, sustancias analgésicas endógenas (bradiquinina, prostaglandinas…), entre otras, y se haga una «limpieza» real de todo ese espacio extracelular.

– La cuarta, para una mejora sustancial de la representación cerebral de la zona afecta, teniendo en cuenta que siempre existe una plasticidad cerebral, para lo bueno y para lo malo, la actividad selectiva del músculo servirá para un reaprendizaje de la tarea con la consecuente adaptación de todo el sistema nervioso (central, periférico y autónomo).

– Y la quinta, no menos importante, para que el músculo, al hacer su acción voluntaria, moviliza directamente o indirectamente al sistema nervioso, desenrollando, deslizando y finalmente tensando, generando toda la capacidad mecánica de adaptación que necesita dicho sistema para adaptarse al movimiento, sin olvidar que a través de él, mejora la calidad del tejido nervioso. ¿Y cómo ocurre? A través del aporte sanguíneo del vasa nervorum, o pequeño sistema circulatorio que lleva sangre oxigenada y con nutrientes al tejido nervioso, ganando calidad y salud al respecto.

 

 

Bibliografía:

(1) Ward S, Pearce AJ, Pietrosimone B, Bennell K, Clark R, Bryant AL. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis. Muscle Nerve 2015 Mar;51(3):327-332.

(2) Roosink M, Renzenbrink GJ, Geurts AC, Ijzerman MJ. Towards a mechanism-based view on post-stroke shoulder pain: theoretical considerations and clinical implications. NeuroRehabilitation 2012;30(2):153-165.

Comunicar no sólo es lenguaje verbal

Comunicar no sólo es lenguaje verbal FisioAso

La comunicación verbal es un elemento relacional entre dos individuos que quieren expresar algo, con un mismo tipo de código entre el emisor y el receptor. Ahora bien, cuando la capacidad de transmitir de forma verbal por parte de las personas afectadas con algún tipo de afección neurológica se ve alterada, perdemos supuestamente cantidad de información, puesto que hemos sido instruidos en el código verbal durante toda nuestra educación/vida, olvidando así toda esa capacidad de observación no verbal que teníamos de forma «natural».

Y es que la comunicación se corta en el momento que nuestros pacientes no pueden expresarse de forma verbal, culpando de ésta manera al emisor (el paciente) cuando realmente quienes están limitados en la capacidad receptora somos nosotros (los profesionales), incapaces de interpretar las expresiones, el lenguaje corporal, las manifestaciones clínicas, muecas, gritos, balbuceos, etc. y por tanto, podríamos ser los culpables de que la comunicación pase por un «firewall» o muro de filtraje de mensajes, perdiendo así información elemental en la comunicación.

Además, también tenemos el caso contrario, que seamos nosotros el emisor y el paciente el receptor, con la pérdida de comprensión hacia el lenguaje verbal. ¿Cómo nos comunicamos entonces? ¿Cómo explicamos a la persona afectada que tiene que realizar un ejercicio de una manera concreta u otra?

En la primera situación, la importancia observacional tiene especial relevancia, y hablamos de observar con los 5 sentidos. Es por ello, que cuando la persona entra por la puerta, debe requerirnos un esfuerzo cognitivo de análisis, toda nuestra atención dirigida hacia la observación de postura, conductas, expresiones faciales, emisión de sonidos, entorno implícito y explícito, acompañantes, etc. dónde a base de entrenamiento y experiencia, se adquiere este tipo de habilidades donde poco a poco, se van reconociendo patrones que te llevarán a formular rápidamente hipótesis (acertadas o no), que posteriormente deberás ir falsando, poniendo a prueba con los recursos que tengas. Durante la estancia del paciente en tu intervención clínica, la emisión de información por parte de la persona afectada, es continua, y hay que estar atentos a la relevancia de ésta. Suele ser común, que durante los tratamientos de fisioterapia (hablo desde el campo que más o menos conozco) aparezcan manifestaciones del sistema nervioso simpático o parasimpático, ya que tras una movilización intensa del sistema nervioso, existen respuestas, como podrían ser sudoración, enrojecimiento de la piel (sobretodo mejillas), mareos, aceleración del pulso, etc. y la necesidad de tenerlas en cuenta es imperiosa, puesto que ello indica que te has pasado en intensidad de tratamiento. Por otro lado, puede pasar el caso contrario, que nuestro paciente esté nervioso, inquieto, con movimientos repetitivos y estereotipados, y que si tras una movilización del sistema nervioso, cambien, planteándonos la necesidad que tiene la persona de moverse, para mejorar tanto su estado cognitivo (sí, cuando alguien está nervioso o le duele algo, en el momento que cambia ese malestar, la persona puede atender, concentrarse en lo que se le pide) como el físico y de su entorno (adecuarlo para motivar a explorar y despertar motivos por los que se mueva).

Por otro lado, cuántas veces nos vemos en la tesitura de pacientes con afasia, que no sabemos si entienden nuestras palabras, o con algún tipo de problema cognitivo, comprenden los supuestos ejercicios que les hemos planteado para que puedan recuperar su estado físico, con el movimiento y la función que ello implica. Es por eso, que una entrada sensorial como el tacto (sí, los fisios somos muy tocones), expresa intencionalidad, guía o invitación a la ejecución de un movimiento, que obviamente tenga sentido para el paciente. Y el sentido del paciente está en el entorno. A ello nos referimos a la adecuación de las características del entorno, de los objetos que vaya a manipular, tengan tanto una relevancia como una significación para la persona, puesto que por ejemplo, si ofrecemos un vaso de agua (como elemento a rehabilitar), que sea porque el paciente tenga sed. Ah, y que haya agua en el vaso, por supuesto…

 

Bibliografía:

Noordzij ML, Newman-Norlund SE, de Ruiter JP, Hagoort P, Levinson SC, Toni I. Neural correlates of intentional communication. Front Neurosci 2010 Dec 8;4:188.

Analizando desde la fisioterapia y terapia ocupacional: El músculo, el protector

Analizando desde la fisioterapia y terapia ocupacional: El músculo, el protector FisioAso

Cuando observamos a un paciente neurológico, desde el punto de vista profesional de la terapia ocupacional y la fisioterapia, la tendencia que se tiene es a fijarse en el estado muscular así como las posturas que generan éstos. Es indudable que los músculos, mediante la contracción mantenida por el estado fisiológico del sistema nervioso, dan como clínica las llamadas contracturas musculares mantenidas, deformidades articulares, cambios estructurales como procesos fibróticos, edema, entre otras muchas, que son las observables y que llaman más rápidamente la atención, como podemos ver en la siguiente imagen:

PIE-EQUINO-VARO-POR-ACCIDENTE-CEREBRO-VASCULARSi analizamos el músculo, y la función que desarrolla en los pacientes neurológicos, así como en nosotros mismos, es la de obedecer. Y el músculo obedece a lo que el sistema nervioso le pide. Hay una frase que nombró el Dr. Sherrington (gran médico neurofisiólogo de antaño, 1857-1952) que particularmente me encanta: «El cuerpo no es más que el fiel reflejo del estado del sistema nervioso«. Si tenemos un cuerpo fuerte, fibrado, en forma, podemos hacernos la idea de que un sistema nervioso ha estado trabajando duramente durante un espacio de tiempo, exigiendo al resto de sistemas que sigan su ritmo. Y viceversa, si tenemos un cuerpo sedentario, ya podemos deducir que el sistema nervioso es realmente el «endeble», ya que podríamos poner a prueba su movilidad, su capacidad de reacción, su cognición, y hasta ver su pobre representación sináptica (en comparación con sujetos que practican deportes) en una resonancia magnética a nivel de representación cerebral (1, 2, 3, 4).

Otra de las funciones, no menos conocida e igual de importante, es el desarrollo protector. El músculo tiene una capacidad contráctil, y con ella, estabilizar o incluso fijar articulaciones (dependiendo del origen e inserción que tengan en los distintos huesos), que se vean comprometidas de algún modo, expuestas a un daño tanto externo como interno (como origen o causa de las mismas). Al inmovilizar dicha articulación, estructuras adyacentes como ligamentos, fascia, tejido conjuntivo, hueso, nervio, o  el tejido que sea, supone un cambio en la fisiología, mecánica, biología, y en conjunto, cambios en la estructura que lo conforman, que dependiendo cómo suceda, nos interesa o no. ¿Y por qué nos interesa? Pues porque si ha habido un daño en el tejido, la necesidad de inmovilizar para su inmediata reparación a través de mecanismos inflamatorios, restauran las capacidades biológicas y por ende, las funcionales de los tejidos. El problema viene cuando el tejido dañado ya reparado no tiene la capacidad funcional.

Por otro lado, el sistema nervioso si se ve agredido, y en consecuencia dañado por algún tipo de agresión interna o externa, su sistema de protección es ordenar al músculo una contracción protectora para inmovilizar la zona, ya que si se continua movilizando, puede generar mayor daño. ¿Cómo puede el sistema nervioso protegerse de ello? Pues a través de información nociceptiva, que generará una respuesta cerebral de dolor, y en consecuencia un espasmo muscular mantenido o intermitente (inmovilizador o limitante), todo ello comprendido desde la «periferia». Pero, ¿y si el daño se genera en el sistema nervioso central? Cerebro, tronco encefálico o médula espinal pueden verse afectados tanto por enfermedades neurodegenerativas, como por lesiones por daño cerebral o medular (traumatismos, ictus, hemorragias…), donde la necesidad de respuesta protectora es inminente. Es por ello, que la misma espasticidad puede plantearse como un suceso que desarrolla una función, la protección de un sistema nervioso dañado. Éste tipo de afirmación es una hipótesis, plausible, pero que estudios en tejido nervioso periférico y las contracciones musculares protectoras espontáneas confirman que el músculo protege al nervio (5, 6, 7, 8)

 

Bibliografía:

(1) Hillman CH. I. An introduction to the relation of physical activity to cognitive and brain health, and scholastic achievement. Monogr Soc Res Child Dev 2014 Dec;79(4):1-6.

(2) Jackson T, Gao X, Chen H. Differences in neural activation to depictions of physical exercise and sedentary activity: an fMRI study of overweight and lean Chinese women. Int J Obes (Lond) 2014 Sep;38(9):1180-1185.

(3) Herrmann SD, Martin LE, Breslin FJ, Honas JJ, Willis EA, Lepping RJ, et al. Neuroimaging studies of factors related to exercise: rationale and design of a 9 month trial. Contemp Clin Trials 2014 Jan;37(1):58-68.

 (4) Tseng BY, Uh J, Rossetti HC, Cullum CM, Diaz-Arrastia RF, Levine BD, et al. Masters athletes exhibit larger regional brain volume and better cognitive performance than sedentary older adults. J Magn Reson Imaging 2013 Nov;38(5):1169-1176.

(5) Mense S. Muscle pain: mechanisms and clinical significance. Dtsch Arztebl Int 2008 Mar;105(12):214-219.

(6) Yang Y, Dai L, Ke M. Spontaneous muscle contraction with extreme pain after thoracotomy treated by pulsed radiofrequency. Pain Physician 2015 Mar-Apr;18(2):E245-9.

(7) Liu J, Yuan Y, Zang L, Fang Y, Liu H, Yu Y. Hemifacial spasm and trigeminal neuralgia in Chiari’s I malformation with hydrocephalus: case report and literature review. Clin Neurol Neurosurg 2014 Jul;122:64-67.

(8) D’hooge R, Cagnie B, Crombez G, Vanderstraeten G, Achten E, Danneels L. Lumbar muscle dysfunction during remission of unilateral recurrent nonspecific low-back pain: evaluation with muscle functional MRI. Clin J Pain 2013 Mar;29(3):187-194.

Neurología: 10 datos que no conocías sobre el cerebro

Neurología: 10 datos que no conocías sobre el cerebro FisioAso

Vamos a presentaros unos pequeños datos, de esos que aportan poco memorizarlos pero que son realmente interesantes, para hacernos una idea del potencial, características o funcionamiento, en este caso, del cerebro. Ésta entrada viene siendo el clásico: Sabías que…

1.- Cerebro viene de la palabra latín cerebrumy lo curioso es que significa «lo que se lleva en la cabeza», ya que sus raíces etimológicas provienen de ker (cabeza) y brum (llevar).

2.- El cerebro,representando un 7,7 % del peso corporal de un ser humano medio, consume nada más y nada menos que el 20% de aporte sanguíneo, gastando cantidad de oxígeno y glucosa. Es que algo tan importante tiene que respirar y alimentarse bien.

3.- Ya que el gasto energético del cerebro es tan alto (entre 250 y 300 kilocalorías), cuando el ser humano pasa literalmente hambre, una de las maneras extremas que tiene éste órgano para sobrevivir, es consumirse a sí mismo. Es decir, que llega a comerse.

4.- Siempre se ha dicho que hasta ahora, naces con un número exacto de neuronas, y que a medida que vas creciendo, éstas van muriendo por envejecimiento, sin que se regeneren o nazcan nuevas. Esto no es del todo cierto, hay zonas localizadas del Sistema Nervioso Central, que generan nuevas neuronas, Neurogénesis lo llaman, como en el bulbo olfactorio y en el hipocampo.

5.- Tu conectoma (conjunto de neuronas y conexiones que dan aspecto de mapa cerebral) contiene 100 billones de neuronas, y 10.000 billones de conexiones entre ellas. Se dice que supera al número de estrellas en el Universo, pero estas comparaciones son tan poéticas y tan poco demostrables… Aún así, la sensación de no poder abarcar tales números, o de insignificancia, ahí está…

6.- Barack Obama invierte 200 millones de euros al año, desde 2013, en la investigación y desarrollo de un mapa cerebral (como el Proyecto Genoma Humano hizo con los genes), donde a la cabeza de un grupo de investigadores científicos está el español Rafael Yuste, nuestro Pau Gasol de la ciencia.

7.- Nuestro cerebro, cuando da una orden simple, envía una copia de esa orden a otra zona del cerebro para generar una información (copia eferente) de que ese acto lo estás realizando tú. Es por eso, que no nos extrañamos al oírnos nuestra propia voz resonar en nuestra cabeza, no nos podemos hacer cosquillas o nos anticipamos a los movimientos que vamos a hacer. Este mecanismo se encuentra alterado en los esquizofrénicos, que curiosamente, pueden hacerse cosquillas.

8.- Nuestro cerebro opina, y nos referimos a opinar sobre hechos que siempre se entendieron como cosas que se generaban antes de que  la información llegara a éste órgano, como es el dolor. Hasta que una señal no llegue al cerebro, no se da una respuesta entendida como dolor. O hasta que el cerebro no diga, esto tiene que doler, no dolerá. De él emana la decisión de si algo duele o no duele. Por supuesto, en este equilibrio, puede haber decisiones erróneas ante hechos que no duelen (como la hiperalgesia o alodinia), o simplemente no haya un daño en el cuerpo, y aún así, el cerebro dirá que duele (como es el caso del miembro fantasma, la sensibilización central, el dolor crónico, entre otros muchos).

9.- Al cerebro se le puede engañar, y nos referimos a percibir cosas que realmente no han sucedido o no existen, como la magia, las ilusiones ópticas, las decisiones de comprar un producto generado por neuromarketing, o la decisión de votar a un partido político u otro. De hecho, en ese engaño, se basan algunas terapias que pueden favorecer la reducción del dolor o generar un movimiento, como la terapia espejo, la mano de goma, exploración de la lateralidad, entre otras.

10.- Si estás tumbado boca arriba, y elevas tus dos piernas a la vez, estando éstas rectas, tu médula espinal se desliza hasta 4 mm hacia caudal (hacia las piernas), lo que supone que el cerebro también tiene una ligera movilidad dentro de ese casco llamado cráneo, junto con la propia médula espinal.

Divisiones del Sistema Nervioso

Divisiones del Sistema Nervioso FisioAso


Queremos aportar el siguiente vídeo muy interesante, fácil de entender y básico para entender las divisiones del Sistema Nervioso, su actuación y su función, dentro de nuestro cuerpo humano. Debemos recordar que éstas divisiones no son «reales», sino son clasificaciones funcionales del Sistema Nervioso para comprender mucho mejor su intervención en nuestro organismo, qué papel desempeñan y cómo se desenvuelven, para poder optimizar el estudio de éste.

Recordemos que el Sistema Nervioso puede dividirse en tres grandes bloques, como el Sistema Nervioso Central (SNC), formado por todo el encéfalo y la médula espinal, el Sistema Nervioso Periférico (SNP), formado por los nervios espinales, y finalmente el Sistema Nervioso Autónomo (SNA), formado por otro tipo de nervios que comunican todas las vísceras, glándulas y vasos sanguíneos.

Lo curioso de éstas divisiones, es que realmente no hay una separación física o una discontinuidad entre estos tres sistemas, es decir, el encéfalo y la médula espinal están juntos, conectados, como también el resto de nervios espinales y los que conforman el SNA. Realmente la separación entre SNC y SNP es un agujero de conjunción vertebral, es una zona de paso, no una discontinuidad. Es como si la autopista A6, en su paso por el túnel del Negrón, en el Huerna, al cambiar de Comunidad Autónoma (Castilla-León a Asturias), dejara de existir un tramo de autopista para poder pasar de una región a otra.

El hecho es que ésta continuidad no es sólo anatómica (cuidado que las meninges están conectadas con las envolturas del nervio, como el perineuro, epineruo y endoneuro) o estructural, es que además existe una continuidad eléctrica, de transmisión de impulsos para poder comunicar un cerebro (por ejemplo) con la punta del dedo gordo del pie izquierdo. Esto es como si en el ejemplo anterior, la central eléctrica que ilumina la carretera del Huerna, no pudiera mandar luz al Km 35 debido a que no existe una estructura que los conectara a nivel eléctrico.

Por último, insistiendo en esa continuidad, en estos tres sistemas circulan los mismos neurotransmisores (sustancias para comunicar una neurona con la otra) excitatorios o inhibitorios, dependiendo del tipo de receptores neuronales, el tipo de mensaje que se quieran enviar o el tipo de mensaje que se quiera inhibir. Volviendo al ejemplo de la autopista, en ella circulan coches, camiones, motocicletas, dependiendo del tonelaje, velocidad o intencionalidad del viaje. Es por ello que no circulan caballos, aviones o barcos.

Para ir concluyendo, la idea de dividir el Sistema Nervioso en distintas partes para facilitar el estudio es comprensible, pero hay que tener cuidado en malinterpretarlas atribuyendo cualidades que se alejan de la realidad, y eso nos pasa mucho tanto a los estudiantes como a los profesionales que nos dedicamos al mundo de la neurología.

 

Lamarckianos

Lamarckianos FisioAso

Jean-Baptiste_de_LamarckJean-Baptise Lamarck (1744-1829), uno de los grandes creadores de la teoría evolutiva de las especies, mucho antes que el mismísimo Charles Darwin, poco reconocido en su época por ir a contracorriente en el pensamiento global de una sociedad dominada por el contexto creacionista, influenciado por creencias religiosas, que aún así desarrolló la teoría evolutiva a partir de sus observaciones. A grandes rasgos, desarrolló la teoría de la evolución a partir de 6 puntos fundamentales (1):

1.- Todos los organismos de la Tierra han sido producidos por la naturaleza sucesivamente y después de una enorme sucesión de tiempo.

2.- En su marcha constante, la Naturaleza ha comenzado, y recomienza aún todos los días, formar de los cuerpos organizados más simples, generaciones espontáneas más complejas.

3.- Estando formados los primeros animales y vegetales, se han desarrollado poco a poco los órganos y con el tiempo se han diversificado.

4.- La facultad de reproducción inherente en cada organismo ha dado lugar a los diferentes modos de multiplicación y de regeneración de los individuos, conservando así los progresos.

5.- Con la ayuda de un tiempo suficiente, de las circunstancias, de los cambios surgidos en la Tierra, de los diferentes hábitos que ante nuevas situaciones los organismos han tenido que mantener, surge la diversidad de éstos.

6.- Los cambios en su organización y de sus partes, lo que se llama especie, han sido sucesiva é insensiblemente formados a partir de llos.

¿ Y por qué cuento esto y qué tiene que ver con la fisioterapia neurológica? Pues pensemos la relación directa que hay entre el individuo y su entorno, la importancia del contexto o ambiente en cualquier ser vivo, pero sobretodo ante una dolencia del tipo daño neurológico, ya que las adaptaciones o maladaptaciones van a ser fundamentales para la capacidad o discapacidad de habilidades adquiridas. Si bien a nivel de las características individuales, desde la biología ponen en énfasis el genotipo (o particularidades de rasgos heredados) también se habla del fenotipo (características individuales que se desarrollarán por influencia del medio) y cómo ambas influyen en el desarrollo de un individuo. Estos mismos conceptos debemos tenerlos claros a la hora de planear estrategias terapéuticas que influenciarán en el desarrollo de las características en todas sus dimensiones (biopsicosocial, cultural, entorno, actividad…) durante la recuperación de cualquier daño neurológico.

De hecho, a grosso modo, existen tres teorías de control motor y en consecuencia, de aprendizaje motor (en base a ellas), que se han intentado definir a lo largo del paso del tiempo, contextualizando la aparición de éstas en una época que no tenían esta teconología que podía mostrar estudios en vivo sobre el funcionamiento del cerebro, pero que tampoco han podido rebatir con toda seguridad en la actualidad, puesto que la dificultad de objetivar y desentramar todo el lío de organización cerebral en las acciones motoras, parece ser demasiado complicado para los investigadores, por la complejidad tanto estructural como funcional. Por eso, todavía existen estas 3 hipótesis de control motor que todavía no han podido refutar al 100%.

1- Teoría del bucle cerrado de Adams: En un proceso de bucle-cerrado, el feedback sensorial es usado en favor a la producción en curso de la habilidad del movimiento. Esta teoría hipotetiza que en el aprendizaje motor, el feedback sensorial del curso del movimiento es comparado dentro del sistema nervioso con la memoria de almacenamiento del movimiento intencionado. Es decir, dicho llanamente, ejecuto el movimiento, detecto mediante feedback un posible error, y lo modifico gracias a la memoria cinética, todo en bucle.

2- Teoría de los esquemas de Shcmidt: propuso que los programas motores no contienen movimientos específicos, sino que insistió en el contenido generalizado de reglas para una clase específica de movimientos. Realizaríamos una representación abstracta de la memoria de almacenamiento siguiendo múltiples presentaciones de una clase de objetos. (es decir, esquemas de movimiento) Además, añadió que en el aprendizaje de un nuevo programa motor, el individuo aprende un conjunto de reglas generales que pueden ser aplicadas a una variedad de contextos.

3- Teoría ecológica: el aprendizaje motor es un proceso que mejora la coordinación entre la percepción y la acción de una forma que es coherente con la tarea y con las limitaciones del ambiente. Durante la práctica del movimiento aparece una búsqueda de estrategias óptimas para solventar la tarea, teniendo en cuenta, además, las limitaciones de ésta. La búsqueda más importante de estrategias óptimas es la exploración del espacio de trabajo motor/perceptual. La exploración de este espacio de trabajo perceptual involucra una búsqueda de todas las posibles señales preceptúales, para así, identificar aquellas que son más importantes en la realización de cualquier tarea específica.

Fijémonos como de nuevo, se tiene en cuenta tanto el contexto como el entorno, a la hora de realizar cualquier acción motora así como el aprendizaje del mismo, con el feedback del durante y final de la ejecución así como el resultado del mismo. Esto, muy en relación con las teorías evolutivas descritas por Lamarck, es una relación con el entorno, del uso y desuso del movimiento así como de la funcionalidad, que influye directamente en las características individuales del sujeto tanto estructurales, como las del resto de dimensiones (en caso que las pudiéramos separar) psicosocial, cultural, experiencial, etc. etc.

A nivel clínico lo vemos a diario, cómo cambios en la funcionalidad (interacción con el entorno) cambian la estructura, o cambios en la estructura, cambian perfectamente la funcionalidad, ambas de la mano, ambas influyendo de manera directa en la singularidad del individuo.

– Ejemplos hay muchos en la fisioterapia en traumatología, cómo tras una lesión del ligamento cruzado anterior en deportistas, generan cambios  a nivel del Sistema Nervioso Central, concretamente en el lemnisco medial, en la representación de esa rodilla, lo que influye de manera directa tanto en la propiocepción, la sensibilidad así como en el desarrollo funcional de ésta (2). Esto explicaría por ejemplo, que tipo de intervención terapéutica es mejor tras un esguince de tobillo, siendo mejor realizar movilizaciones precozmente antes que realizar una inmovilización (3) ya que se obtienen mejores resultados en los síntomas residuales (funcionalidad) así como en la inestabilidad del mismo tobillo (estructura), además de poder volver antes al trabajo (social) y ser más confortable para el paciente (psicológico).

– O el ejemplo de la Terapia Restrictiva del Lado Sano, donde las investigaciones con monos desaferenciados realizados por Edward Taub, que precisamente no podían mover el brazo debido a la lesión creada, la actuación llevada a cabo por el investigador, fue precisamente restringir los movimientos del lado sano, para que el afecto tuviera que realizar el esfuerzo de interactuar con el entorno (funcionalidad). Poco a poco observaron cambios relevantes, donde la reorganización cortical y los cambios estructurales se hicieron patentes en los monos. (4)

– ¿Y si estudiamos la organización estructural y funcional en personas que precisamente no ven, es decir, ciegas? ¿Es muy diferente a nuestra estructura? Efectivamente, los estudios muestran como la organización cerebral de una persona nacida ciega, y gracias a esos cambios estructurales (secundarios o primarios a la interacción con el entorno, esto es discutible) pueden a través de su tacto «ver». De hecho, mientras realizan una palpación, lo que se ve en la resonancia magnética es la activación del córtex occipital, el área representativa de la vista. Curioso, ¿no? (5)

– O finalmente, cómo en personas con dolor lumbar crónico, tienen modificada la representación cerebral (6), quizás a causa o en consecuencia de un cambio en el control motor debido a ese dolor, al inmovilismo, a los cambios en los hábitos del movimiento, a la influencia del contexto, a la mecánica estructural, etc. etc. Por esa inespecificidad y falta de subclasificación del paciente, los fisioterapeutas vamos «algo de culo» para tener éxito en las intervenciones con este tipo de paciente. Pero lo que sí es seguro y eso ya está estudiado, es ese cambio cortical que la revisión sistemática pone de relieve.

 

En fin, fijaros como la interacción con el entorno es fundamental, ya lo decían los sabios de las teorías evolutivas, cómo nos dieron pistas a los que nos dedicamos precisamente a la rehabilitación, los profesionales que devolvemos en medida de lo posible, esa interacción íntima con el contexto que les rodea. Demos motivos y ganas a nuestros pacientes de relacionarse con el medio, que les valga la pena moverse y ejecutar una acción, que generen ideas y todo ello repercuta en su calidad de vida.

 

Bibliografia:

(1) Wikipedia [http://es.wikipedia.org/wiki/Jean-Baptiste_Lamarck] (Consulta: 8/02/2015)

(2) Valeriani M, Restuccia D, Di Lazzaro V, Franceschi F, Fabbriciani C, Tonali P. Central nervous system modifications in patients with lesion of the anterior cruciate ligament of the knee. Brain 1996 Oct;119 ( Pt 5)(Pt 5):1751-1762.

(3) Eiff MP, Smith AT, Smith GE. Early mobilization versus immobilization in the treatment of lateral ankle sprains. Am J Sports Med 1994 Jan-Feb;22(1):83-88.

(4) Taub E, Uswatt G. Constraint-Induced Movement therapy: answers and questions after two decades of research. NeuroRehabilitation 2006;21(2):93-95.

(5) Ricciardi E, Handjaras G, Pietrini P. The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain. Exp Biol Med (Maywood) 2014 Nov;239(11):1414-1420.

(6) Daffada PJ, Walsh N, McCabe CS, Palmer S. The impact of cortical remapping interventions on pain and disability in chronic low back pain: A systematic review. Physiotherapy 2015 Mar;101(1):25-33.

 

 

Sistema nervioso y la inmovilidad. La espasticidad tiene su función

Sistema nervioso y la inmovilidad. La espasticidad tiene su función FisioAso
www.asociacionperfetti.com

www.asociacionperfetti.com

Los abordajes neurológicos, en su mayoría, fueron creados por allá los años 70’s y 80’s bajo un contexto de observación clínica y conocimientos limitados en neurociencia y neurofisiología, muy admirables por los recursos limitados que tenían, con la intención de objetivar y plasmar lo que sucede tras un daño en el sistema nervioso. Actualmente existen teorías (por ejemplo la neurocognitiva) que se están reafirmando en cuanto a bases se refiere, así como la capacidad del sistema nervioso de adaptarse ante adversidades de manera lenta pero continua, con aquello de la existencia de la neuroplasticidad tanto adaptativa como maladaptativa. Sin embargo, el enfoque neurológico en cuanto a nivel estructural, sigue centrándose en la musculatura, en problemas de desequilibrios agonista y antagonista, en problemática de una ausencia de control voluntario de una contracción muscular clave para intentar alinear perfectamente el cuerpo y así poder desarrollar la funcionalidad con menos esfuerzo, gasto energético y mayor eficiencia. Mismamente, otro enfoque común es intervenir a nivel de sistema nervioso central, ya sea construyendo tanto la anticipación del movimiento de forma imaginativa, copiando otros movimientos realizados por otra persona, desarrollando un campo virtual para que las neuronas espejo actúen, o reconstruyendo a través de un espejo el cuerpo virtual, de manera que una vez se reorganice toda la parte afecta del sistema nervioso ocasionado por un daño, el movimiento y la función emergerán a base de tareas repetitivas y con cierto sentido para el paciente.

Sin embargo, deberíamos tener en cuenta que estas subdivisiones o diferentes tipos de abordaje podrían ser incompletos, no todo es cerebro, ni todo es problema mecánico-estructural. Hay matices, siempre los hay. Cantidad de fisioterapeutas australianos llevan insistiéndonos bastante tiempo en cuanto a dolor se refiere, frases al estilo: «Pain is in the brain» o «The tissue is not the issue» hay que tenerlas como referencia no en su veracidad irrefutable, sino como elementos a tener en cuenta y valorar en nuestra intervención clínica, es decir, un equilibrio entre ambas siempre tras un proceso clínico de valoración y contrucción de hipótesis. Discusión entre abordaje estructural sin tener en cuenta el sistema nervioso, o abordaje de educación del dolor sin tener en cuenta los tejidos… Como dirían los gallegos: Depende. Creo que algo similar está ocurriendo en la fisioterapia neurológica, abordajes con tendencia a constructo o reorganización del SNC, o abordajes que insisten en que la problemática es mas bien de desalineación estructural centrados en desequilibrios musculares por problemática de alteraciones en reflejo miotático.

"Pain is in the Brain" (Ilustración de nuestros amigos Brainy Monkey)

«Pain is in the Brain» (Ilustración de nuestros amigos Brainy Monkey)

A diferencia de los avances tan rápidos que se están realizando en el dolor gracias a unos cuantos fisioterapeutas punteros, entre otros profesionales de la salud, en neurología parece que todavía algo tan básico y que tratamos a diario, la espasticidad, todavía se están barajando hipótesis sobre su funcionalidad, origen o mecanismos completos de ejecución. Y las intervenciones siempre van dirigidas a eliminarla o reducirla, desde diferentes métodos y perspectivas, como la farmacológica, toxina botulínica, intervención quirúrgica, ferulaje, estiramientos… Métodos en los que se tiene en cuenta el músculo, y sus consecuencias de estar siempre en contracción, las deformidades articulares.

Sin embargo, quizá deberíamos pensar que esa espasticidad o hipertonia tenga una finalidad, como lo hace la inflamación ante un proceso traumático con su acción nociceptiva, inmovilizando levemente la zona en su desarrollo funcional, con el objetivo de reparar el daño tisular y poder desarrollar así una óptima recuperación. Aquí entra en discusión, tanto a nivel científico como clínico, la aplicación de hielo para paralizar ese hinchazón «reparatorio», pero eso no nos atañe en el blog. La problemática en la que todos estamos de acuerdo, es que si las reacciones pro-inflamatorias se perpetúan, las condiciones locales a nivel tisular cambian, complicando así el proceso natural de recuperación funcional. Deberíamos plantear que tras daño neurológico (ACV, TCE, Lesión Medular…) hay una respuesta pro-inflamatoria con su reparación tisular en el SNC, que inmoviliza la funcionalidad de todo un hemicuerpo (por ejemplo) tal y como sucede en la típica fase inicial que llaman flácida, pero que tras su reabsorción se vuelve de repente hipertónica o espástica. Sin embargo, cuando ya apareció esa espasticidad, pensamos que la fase disfuncional ha finalizado debido al cambio de esas condiciones clínicas, y que dicha espasticidad es una reorganización maladaptativa e inútil del sistema nervioso sin ninguna finalidad.

images

Patrón flexor característico… Pero, ¿qué protege?

Pero, el hecho es que el paciente neurológico ha sido sometido a un daño el cual ha tenido un proceso largo de inmovilización, y como tal, las condiciones mecánicas y tisulares han cambiado nos gusten o no, y hablamos de componentes estructurales del nervio, ligamento, músculo, etc. y que tras la fase flácida descrita, la inmovilización perdura por la pérdida de control motor. Ese es el gran problema del paciente neurológico, que el sistema no se mueve. Por eso, el éxito de la movilización pasiva en ictus agudo (unidades de ictus) y encamado, tras sólo la estabilización de los factores vitales, tiene tanto éxito tanto a nivel clínico como de investigación, donde aparece una menor reacción hipertónica tras reabsorción del edema en el SNC, debido a que las condiciones del nervio y sus interfases, han continuado más o menos estables durante ese tiempo de impacto gracias a la intervención de los profesionales. Por ello, protocolos de actuación como en la Copenhaguen Stroke Study o la American Stroke Study que vimos en el #FightClubFSR de neuro.

¿Pero, y si no se moviliza tan precozmente porque no tenemos la suerte de tener cerca una unidad de ictus? Pues que el tiempo de inmovilismo se prolonga, las condiciones «periféricas» cambian, y a su vez las «centrales», es decir, el sistema nervioso se adapta a lo que hay, y por eso, a la que llevamos una articulación a supuestos rangos articulares funcionales, hay una respuesta protectora, como os voy a mostrar en este vídeo:

En comparación con el vídeo de la entrada anterior, es la siguiente. Se realiza un SLR en extremidad derecha, pero la diferencia es que se coloca la pierna izquierda en una precarga, es decir, en posición de tensión neural del plexo lumbar, lo que vendría a ser extensión de cadera y flexión de rodilla, aunque nos faltaría el componente de rotación interna. Lo que vendríamos a observar es que, durante la ejecución del SLR de esa pierna, el rango articular es mucho menor debido a esa posición de precarga, lo que implica una reacción «protectora» o de espasmo más inmediata en el diagrama de movimiento. Pero eso ya lo desarrollaremos en otra entrada. Por hoy lo dejo aquí.

El sistema nervioso se adapta al movimiento

El sistema nervioso se adapta al movimiento FisioAso

nervioEl sistema nervioso ya no se define como una totalidad de cables estáticos en los cuales se transmite información que viene del exterior, conductores emitiendo información a centros superiores donde se procesa el mensaje y posteriormente se comunica a los órganos diana para la ejecución de la orden. Bueno, continúa siendo así, pero con matices. Matices a tener en cuenta como que éste sistema tiene un componente mecánico, donde como comenta David Butler en su libro «movilización del sistema nervioso»: «El sistema nervioso se adapta al movimiento», y lo hace de varias maneras ya estudiadas y evidenciadas: mediante movimiento intraneural y extraneural. Todo esto ya lo han definido en sus tiempos autores como Sunderland, Breig, Elvey, Shacklock y por supuesto Butler.
Si cabe todavía la menor duda os dejo con este vídeo de un curso de Carlos López Cubas con los colegas Zérapi, con Lorenzo Rodríguez al ecógrafo:

Muchas investigaciones han centrado sus estudios en la clínica que proporciona la pato-mecánica del sistema nervioso, donde cobran especial relevancia las zonas delicadas por donde pasan los nervios a través de otras estructuras musculo-esqueléticas, como túneles, ligamentos, músculos, hueso… El punto de mira de dichos estudios va dirigido hacia la pato-clínica que despierta en el paciente ortopédico, el dolor. La ausencia de movilidad, o falta de deslizamiento del sistema nervioso, por la causa que sea (atrapamiento, inflamación, irritación química, sobreuso, etc.), activa el propio sistema encargado de informar sobre lo que está pasando en el propio nervio, mediante las fibras C, o nervi nervorum, para informar vía sistema somatosensiorial que algo no funciona correctamente, con el consiguiente output de dolor, o a efectos mayores, espasmo.
Si el sistema se ve afectado por esa mecanosensibilidad (respuesta dolorosa a la tensión del nervio «tocado») en una zona comprometida, que impide la funcionalidad del paciente y por tanto el movimiento en su máxima expresión, el cuerpo adapta una postura de tensión antálgica, ya que es una forma de protegerse ante amplios rangos de movimiento que comprometen al sistema en una puesta en tensión supuestamente demasiado agresiva para él. Butler en su libro, define una posición muy curiosa en un paciente con problemática en la zona lumbar, concretamente por compromiso en el plexo sacro, describiéndola como: «Una postura de tensión antálgica. Nótese el pie en posición neutra y hacia una flexión plantar, flexión de rodilla, flexión de la cadera, abducción y rotación lateral y la columna cervical lateralmente flexionada hacia el lado del dolor»

Butler D. "Movilización del sistema nervioso"

Imagen del libro: Butler D. «Movilización del sistema nervioso»

Sin duda es una posición de evasión de tensión, ya que los componentes descritos «descargan» al plexo sacro, o dicho de otra manera, si añadimos los componentes exactamente contrarios a los descritos, el nervio tibial entra en tensión en su máxima expresión. Dicho todo esto, quiero que veáis el siguiente vídeo:

Os cuento. Es un paciente con Guillain-Barré, diagnosticado más de un año, así que perfectamente podemos pensar en que la situación inflamatoria del sistema nervioso ha quedado estable (causa inmunomediada), con lo que el tratamiento que estamos realizando no sólo es neurodinámico, sino algo un poquillo más complicado, y ya puede llevarse a cabo. Dicho esto, y aunque los pacientes con Guillain-Barré suelen tener clínica más bien hipotónica (polineuropatía adquirida inflamatoria), en éste caso llegó a «tocar» la médula espinal, por eso observamos tanta hipertonía o supuesta espasticidad. Cabe destacar que no existe conducción nerviosa según electromiografía, por tanto, existe alteración severa tanto de la sensibilidad como en parte motora. Pues bien, en el vídeo se le realiza la prueba de SLR (Straight Leg Raise) o EPE (Elevación Pierna Estirada), donde al llegar a ciertos grados de tensión neural, el sistema nervioso responde con un movimiento de evasión de tensión completamente involuntario que coincide perfectamente en la ya descrita por Butler en su libro.
Durante la elevación de la pierna estirada, el sistema nervioso va adaptándose lentamente al movimiento, donde durante el rango de éste, podemos registrar tanto las resistencias, dolor, así como el espasmo, que en éste caso se debe tener en cuenta el desarrollado en la pierna contraria. Pero, ¿Cuál es el marco teórico que puede explicar esta reacción si no fuera por problemas de tensión neural? Podemos pensar en reacciones asociadas, respuestas reflejas por ausencia de adaptabilidad de los mecanoreceptores, órgano tendinoso de Golgi, o cualquier otro receptor que haya sido estimulado de forma brusca, pero… ¿La elevación fue rápida? Creo que no. ¿La activación de los isquiotibiales es la respuesta a un exceso de elongación, hablando entonces de un reflejo miotónico? No, porque reacciona la otra pierna. ¿Existe el reflejo miotónico bilateral? Ni idea, sólo planteo hipótesis. ¿Alguien puede plantear alguna con sentido que explique lo que está sucediendo a nivel clínico? Por favor, sed libres de opinar o aportar.
De todas formas, podemos preguntarnos por qué desde este abordaje estamos siempre comparando con los pacientes ortopédicos, si la clínica en paciente neurológico es completamente diferente, además de que en paciente traumatológico no presenta una afectación del sistema nervioso central. Lo primero quisiera responderos es que las bases mecánicas del sistema nervioso han sido estudiadas en pacientes ortopédicos, y las investigaciones han profundizado en la clínica del dolor, quizá porque haya sido más fácil la colaboración del paciente, quizá porque no haya limitación tan severa en los rangos de movilidad tanto activa como pasiva, o porque la pato-clínica en paciente ortopédico no es tan variada o heterogénea como la del neurológico (me refiero a las complicaciones y afectación de otros sistemas adyacentes, como respi, cardio, etc.), y todo ello favorece más la investigación en el ámbito del paciente ortopédico. O quizás porque el paciente neurológico no importe a nivel social, qué sé yo! En fin, siempre queda decir que están en ello, aunque continúan centrándose en rehabilitación con robots, realidad virtual, etc. poniendo el foco en el sistema nervioso central, sin tener en cuenta la parte estructural y mecánica. Quizá haya que buscar el equilibrio entre ambos…
A todo esto, habría que comentar que toda patología y patomecánica del paciente neurológico no tiene porque tener origen en la mala adaptabilidad del sistema nervioso ante el movimiento,ni en problemas específicos de tensión neural, no todo es blanco o negro. De hecho, por poder, tenemos problemática de alteraciones en la orientación, miedo, comunicación, problemas articulares, deformidades y un largo etcétera. Para todo eso, y siempre, razonamiento clínico, testar y retestar nuestra intervención. Mirar el marco teórico, observar clínica, volver al marco teórico y ver las respuestas clínicas. Muro de ladrillos permeable…

En fin, sigamos aportando y debatiendo. Feliz lectura

Signos en el Sistema Nervioso tras un ictus

Signos en el Sistema Nervioso tras un ictus FisioAso

Una de las funciones que mantiene en funcionamiento el estado de nuestro cuerpo, sobretodo ante estímulos que necesitan respuestas rápidas para supervivencia de la especie, es la función que desarrollan los reflejos. La necesidad de acortar el recorrido nervioso ante un estímulo amenazante, para ganar así tiempo de reacción y poder sobrevivir, se ha mantenido claramente durante nuestra evolución (aquello del cerebro reptiliano, mamífero y neocortex) debido al desarrollo funcional excepcional que nos ha mantenido vivos al largo del paso de la historia.

A todo esto, conocemos montones de ellos, que se hacen patentes desde que somos pequeños, y aunque poco a poco vayamos controlándolos a través de la «corticalización» o la implicación de los procesos superiores, donde me atrevo a decir que estos nos acompañan toda la vida aunque algunos lo hagan de forma «silente». Un montón de ejemplos se nos vienen a la cabeza sobretodo en, por ejemplo, algún tipo de demencia con su característica atrofia cortical, como sería la reaparición del reflejo de la succión, el parpadeo no inhibido al golpetear la glabela, la protrusión de los labios al golpear perioralmente, el reflejo mandibular… O el hecho de padecer daño neurológico donde se manifiestan entre otros el grasping, Babinski, el de retirada, hiperreflexia en los ROT’s…

Pero una de las cosas que más me llama la atención son las sincinesias, que las decriben como ejecución de un movimiento voluntario e inmediatamente aparece junto con él una reacción automática. Podríamos decir que es una combinación de movimiento voluntario y automático que pone de manifiesto la relación entre estructuras llevadas a cabo por el sistema nervioso como base. Hay que comentar que las sincinesias se presentan tanto en personas no afectadas por lesión neurológica, como son el braceo durante la marcha, la contracción de los masticadores, cierre de la glotis, fruncimiento de los músculos de la cara durante un esfuerzo, al mover la cabeza junto con los ojos… así como en nuestros pacientes neurológicos, donde muchos de los médicos los han descrito como signos característicos de respuesta en daño neurológico tanto central como algunos específicamente de segunda motoneurona, dependiendo de la especificidad de cada uno de ellos.

Aquí os dejo con algunos de ellos con alguna que otra observación:

Signo de Hoover: se coloca al paciente en decúbito supino con las piernas estiradas, se pone la mano o dedos del examinador debajo del talón de la pierna a valorar (la sana) y se pide que haga una elevación de la pierna contraria con la rodilla estirada (la afecta). La respuesta que esperamos es que con el talón acabe aplastando la mano o dedos del examinador de forma significativa mientras se está elevando la pierna contraria. Dicha respuesta se halla en paciente no afectado neurológicamente, mientras que en el paciente neurológico se activa de forma significativa.

 

exploración neurologia

 

– Signo de flexión combinada del muslo y del tronco: se coloca al paciente en decúbito supino sobre la camilla, se le pide una flexión de tronco, donde existe una respuesta de elevación de la pierna en extensión de rodilla.

reaccion adversa

 

 

Signo de Neri: Dos modalidades que describe este señor.

La primera, colocando al paciente en decúbito supino, el examinador realiza una flexión de cadera en extensión de rodilla. Durante el recorrido articular, existe una respuesta de flexión de rodilla. (me recuerda a alguna de las pruebas ortopédicas del ciático, pero la respuesta no solo es motora, sino que además dolorosa).

La segunda, se coloca al paciente de pie, se le pide una flexión de tronco, donde existirá una respuesta del miembro afecto flexionándose a nivel de rodilla.

 

Signo de Cacciapuoti: paciente en decúbito supino, con la pierna sana elevada en extensión de rodilla y la afecta estirada. Se le pide un movimiento resistido de extensión de cadera de la sana (resistida por el examinador) donde aparecerá la elevación de la pierna afecta.

A lo que pienso yo, si realizamos las mismas maniobras en un paciente no afectado a nivel neurológico, la respuesta es la misma, probadlo y hablamos. Por tanto, ¿es realmente un signo de afectación neurológica? Habrá que buscar bibliografía.

Signo del pulgar o de Klippel: un fenónemos característico en el síndrome espástico, se le realiza al paciente una extensión pasiva de los dedos de la mano afecta donde se obrserva una respuesta involuntaria de flexión de los dedos y abducción del 1er dedo.

signo neurologia

Signo de Raimiste:  paciente en decúbito supino, se realiza una ABD contra resistencia en la extremidad inferior sana, hecho que la afecta reacciona con una ABD. Lo mismo si realizamos una ADD contra resistencia en extremidad inferior sana, la afecta responderá automáticamente con una ADD. Si todo esto hacemos lo mismo en la extremidad superior, se denomina Signo de Sterling. Sigo opinando como con el signo de Cacciapuoti, en paciente no neurológico si aplicas esa resistencia, la respuesta adyacente viene a ser igual.

sistema nervioso prueba

 

 

Signo de Magnus y Klein: Paciente en decúbito supino, donde al mandarle girar la cabeza hacia el lado contrario a la hemiplejía, el brazo parético se flexiona y prona su mano, y el brazo sano se hiperextiende y supina, tal y como lo vemos en la imagen.
Estas son unas pocas, existen un montón más como para aburrir, por ejemplo las reacciones asociadas a vías específicas como la vestibulo-espinal que nos ayudan mantener el equilibrio (descritas en este post), o el hecho de observar a un paciente con ACV caminando con la reacción asociada del brazo parético aumentando la espasticidad hacia el patrón flexor.

Varias de estas sincinesias me llaman especial atención, y más con la formación e información que voy aprendiendo a lo largo de esta apasionante carrera profesional, no sólo formativa, sino clínica (la que me dan mis pacientes), libros, papers e interacción con otros profesionales especializados en éste ámbito vía 2.0. Pero a lo que voy, si tras afectación de vía corticoespinal (o piramidal, o de primera motoneurona, como queráis) por ACV, un sistema nervioso a la defensiva (incluyendo SNC y SNP, que no hay diferencia a nivel mecánico) que cambia sus componentes tanto neurofisiológicos así como mecánicos (adaptaciones o desadaptaciones de los tejidos), se manifiesta y nos da pistas para que razonamenos o reflexionemos al menos desde la perspectiva asistencial en fisioterapia, habrá que observar y plantear posibles hipótesis.

Si con un signo de Neri, elevamos la pierna afecta con flexión de cadera y extensión de rodilla, y automáticamente en un rango de ROM hay una respuesta de flexión de rodilla, me hace sospechar que la sincinesia lo que quiere evitar es una tensión excesiva de un sistema nervioso defensivo (flexionando la rodilla quitamos rápidamente tensión al sistema), de tal manera que la respuesta se halle mucho antes en el recorrido articular de la cadera del paciente neurológico que del paciente no afecto. Es cuestión de medir y realizar un diagrama de movimiento.

Si pensamos en el signo del pulgar, me gustaría que participaran los lectores especializados en mano y aporten su punto de vista, pero el hecho de extender los dedos e inmediatamente el pulgar se flexione, podría deberse a cantidad de retracciones de las interfases, pero si seguimos pensando en sistema nervioso, en el momento que extiendo los dedos inmediatamente se tensa el nervio que los irriga, el mediano, de forma que tiene que existir un componente inmediato que libere de esa tensión al sistema, y quizás la respuesta esté en ese pulgar aliviando y evitando de nuevo la tensión del sistema, esta vez el radial. ¿Razonamiento loco? Una hipótesis.

Por último, y este efecto si que es brutal, en el signo de Magnus y Klein, en el momento que se gira la cabeza al lado contrario de la hemiplejia, resulta que la extremidad afecta se «encoge» de forma automática evitando así la tensión provocada en el plexo braquial, mientras que el lado contrario pasa efectivamente lo contrario. Quizás podamos plantear que el reflejo asimétrico de cuello (o posición de esgrima) debido a esa «decorticalización» por lesión del SNC, se vea desinhibido e incontrolado por los centros superiores. Pero podríamos realizar una maniobra similar para observar estas reacciones, propongo en vez de rotar la cabeza, se incline hacia el lado contrario o simplemente el descenso progresivo y con mucho cuidado del hombro (acromioclavicular, no la glenohumeral) de manera que tensaremos de la misma forma ese plexo afectado. Observemos reacciones… De esta forma eliminamos componentes de reflejo asimétrico de cuello, por ejemplo.

En fin, este ha sido un post reflexivo, a partir de la observación de estas sincinesias que nos aportan nuestros colegas neurólogos.

 

Bibliografía:

– Pardo Gutierrez, Norman. Lecciones de Semiología Neurológica. Universidad Caldas, 2005.

[contact-form-7 404 "No encontrado"]